
December 1999 The Delphi Magazine 61

COM Corner:
An Introduction To COM+
by Steve Teixeira

If all goes according to
Microsoft’s plans, Windows 2000

will be on store shelves before the
year is over [Latest rumours are that
this is maybe unlikely, but then
again you never know with the folks
at Redmond! Ed]. Not only does
Windows 2000 represent the first
major release of a Windows
NT-based product in over three
years, it also represents perhaps
the largest single step forward for
COM since its inception as the
underpinnings of OLE 2.0. COM+ is
the new version of COM that will
ship with Windows 2000, and this
article is intended to bring you up
to speed on what COM+ is and how
it affects you as a Delphi developer.

COM Who?
Before I progress any further into
describing COM+, please allow me
to set your mind at ease by saying
this: almost everything you know
about COM still applies. After all,
COM definitely takes no small
degree of dedication to learn well,
and it would be very disheartening
to have to ride the same learning
curve once again. The interesting
thing about COM+ is that it is not a
strange, new monster, but merely
some fairly nice evolutionary
changes to COM, combined with
the integration of some of
Microsoft’s COM-based services
that you might already be familiar
with.

In plain English, COM+ can be
boiled down to this: COM with a
few new features, integrated with
Microsoft Transaction Server
(MTS) and Microsoft Message
Queue (MSMQ).

Because COM+ is based on COM
and fully backward compatible
with COM, you have no worries
from a Delphi perspective. Delphi
works just as great with COM+ as it
does with COM. To be able to build
optimized COM+ components,

there are certainly a few fundamen-
tal additions you’ll need to know
about, particularly with regard to a
new class of components called
configured that I will discuss in
more detail later, but it’s important
that you know that all the world of
COM+ is available to you as a
Delphi developer.

Why COM?
Why did Microsoft choose to base
COM+ on COM, rather than moving
in some completely different direc-
tion? A fair question, especially in
the light of some of the negative
comments we may all hear about
COM in its skirmishes with compet-
ing technologies such as CORBA
and Enterprise Java Beans (EJB) in
the battlefields of the industry
tabloids.

Not only is COM a good founda-
tion to build on technologically,
but the business case around COM
is very compelling when you con-
sider that COM is programming
language independent, COM is sup-
ported by every major Windows
development tool, and every Win-
dows 95/98/NT user is already run-
ning COM (which puts the installed
base at around 150 million users
according to Microsoft). The Giga
Information Group recently
reported that COM is a $670 million
market (not including Microsoft).

Probably the biggest negative
aspect of COM is its reputation for
being difficult to scale to large
numbers of users involved in large
numbers of transactions. In
typically Microsoft fashion, a
major intent of COM+ is to leverage
the positives while attempting to
eliminate the negatives.

We can classify COM+ features
into three distinct categories:
runtime, services and administra-
tion. Services make up the bulk of
the new features in COM+, so we’ll
discuss those first.

Services
COM+ services are the things that
we today consider to be add-ons to
COM. Technology currently found
in MTS and MSMQ, for example,
make up some of the services
found in COM+. Think of services
as systems built by Microsoft on
top of COM+ designed to somehow
add value to component-based
development. As I mentioned,
some services, such as transac-
tions and queued components, are
present thanks to off-the-shelf
technology. Consequently, if you
have experience with these tech-
nologies already, you’ll have a leg
up as you begin to write COM+
applications. Other services, how-
ever, such as object pooling and
late bound events, are things that
are probably new to you and may
take some getting used to.

Transactions
As the ‘T’ in MTS, it should be no
surprise to find transactions play-
ing a major role in COM+. COM+
implements the MTS model for
transactions, which I discussed
previously in Issues 45 and 46.
Without transaction support,
there is no way a collection of
objects would be able to support a
complicated business application.

For example, a transaction
involving an online purchase of
some item might involve the par-
ticipation of several objects com-
municating with one or more
databases to receive the request,
check the inventory, debit the
credit card, update the accounting
ledger, and finally issue a ship
order. All of these things need to
happen in concert; if something
goes wrong in any of these pro-
cesses, the state of all objects and
data needs to be rolled back to the
state they were in before the entire
transaction began. As you can
imagine, this process of managing

62 The Delphi Magazine Issue 52

transactions is even more compli-
cated when the objects involved
are spread across multiple
machines.

Transactions are controlled cen-
trally by the MS Distributed
Transaction Coordinator (DTC).
When a COM+ application calls for
transactions, the DTC will enlist
the assistance of and coordinate
other software elements, including
transaction managers, resource
managers, and resource dispens-
ers. Each computer participating
in a transaction has a transaction
manager that tracks transaction
activity on that specific machine.
Transaction managers, however,
are ignorant of data, as persistent
information such as database data
or message queue messages are
managed by a resource manager. A
resource dispenser manages
non-persistent state information,
such as database connections.
Each of these specialized elements
managed by the DTC know how to
commit and recover its specific
resource.

Security
Security is often the first thing we
see in the morning. Our PCs insist
that we log in before using them,
and any applications we run that
deal with non-trivial data often do
the same. As developers, we have
to know who is using the system in
order to determine what type of
access they will have to an applica-
tion’s resources. This is generally a
pretty simple task on a single
machine or with a single database,
but as we throw distributed
objects into the mix, dealing with
security efficiently and effectively
is not a trivial task.

While COM+ provides several
approaches to security, the pri-
mary mode of security control is
the role-based security system
inherited from MTS. Role-based
security enables an administrator
to classify users as belong to
specific groups, called roles, and
provides the COM+ developer with
the ability to easily check the role
of a caller programmatically. This
gives the developer the flexibility
to do security checking where
and when appropriate to the

application, even on a per-method
basis.

Just-In-Time Activation
Just-In-Time (JIT) activation refers
to functionality already present in
MTS that enables an object to be
transparently destroyed and
re-created without the knowledge
of the client application. JIT activa-
tion potentially enables a server to
handle a higher volume of clients,
since resources used by an object
can be reclaimed by the system
when it is deactivated.

The object developer has full
control over when an object is
deactivated, and objects should
only be deactivated when they
have no state to maintain. An
object can be deactivated using
the SetComplete or SetAbort meth-
ods of IObjectContext, or the
SetDeactivateOnReturn method of
IContextState.

Queued Components
Queued components are based on
MSMQ technology. This feature
effectively allows objects to be
manipulated asynchronously. An
example of this is the disconnected
model, when a client doesn’t have
a physical connection to the server
but still needs to communicate
some information to the server. In
this model, the communication is
‘recorded’ while the client is
offline, and ‘played back’ to the
server object at a later time when
the client is online and
synchronizes.

The architecture involved in
queued components involves four
important pieces. First is the
recorder, that listens to and cap-
tures the clients’ attempts to
manipulate the server. Second is
the queue, which stores the ‘mes-
sages’ for later playback. Third is
the listener, which removes and
interprets a message from the
queue, and passes it on to the
player. The player acts as proxy for
the original sender, manipulating
the server object directly.

Object Pooling
You may remember that wacky
CanBePooled method of IObject-
Control that MTS simply ignored.

The good news is that CanBePooled
is no longer ignored, and COM+
does support object pooling.
Object pooling provides the ability
to keep a pool of some particular
number of instances of a particular
object, and having the objects in
this pool be used by multiple cli-
ents. Similar to JIT activation, the
goal is to increase overall through-
put of the system. However, JIT
activation carries the assumption
that objects are not expensive to
create or destroy (because it is
done frequently). If an object is
expensive to create or destroy, it
makes more sense to keep
instances around after their cre-
ation by pooling them.

There are a number of limita-
tions imposed on objects that wish
to support pooling. These include
the following.

First, the object must be state-
less, so it maintains no instance-
specific data between method
calls.

Next, the object must have no
thread affinity. That is, they should
not be bound to any particular
thread and they should not use
thread local storage (TLS, or
‘threadvar’ variables in the Delphi
world).

The object must also be
aggregatable. Resources must be
manually enlisted in transactions.
The resource manager cannot au-
tomatically enlist resources on the
object’s behalf.

Finally, the object must imple-
ment IObjectControl.

Events
Delphi developers don’t need to be
sold on the importance of events.
How else would we know when a
button was clicked or a record
posted? However, while COM
developers have also been aware
of the importance of events, they
often avoided them due to the
complexity of implementation.
COM+ introduces a new event
model, which, thank heavens, is
not tied to the Byzantine connec-
tion points model that has been
common in COM to this point.

The COM+ event model is based
on an asynchronous publish-and-
subscribe model that functions on

December 1999 The Delphi Magazine 63

a per-method-level. This is a huge
step forward for two reasons: first,
events are queued and fired
asynchronously by the system,
meaning that the source object can
‘fire and forget’ and know that
COM+ will handle the propagation.
Second, the connection points
implementation of events required
that event listeners implement an
entire interface, even if they were
only interested in one method,
whereas events are now single
methods. Also present in the COM+
event model is the ability to filter
events based on parameter values,
so that you can be very specific
about the events you’re interested
in.

Services Not In COM+
Beta releases and early documen-
tation on COM+ included some ser-
vices that it appears will not be in
the final release of Windows 2000.
Being beta software, it is all of
course subject to change, but
based on the latest information
available from Microsoft, the
following services will not be
present in the shipping version of
COM+: load balancing, the
in-memory database, and the
transactional shared property
manager.

Load Balancing
Load balancing increases the
scalability of a system by enabling
workload to be distributed across
multiple machines. The COM+
implementation of load balancing
was known as Component Load
Balancing (CLB). Microsoft has
chosen to remove CLB from
Windows 2000 and instead offer
it as a separate add-on available in
the upcoming Microsoft
AppCenter Server.

In-Memory Database (IMDB)
Beta versions of Windows 2000
included a feature called IMDB,
which was effectively an in-
memory, transactional cache that
operated on database semantics,
enabling very fast storage and
access to data. Recent statements
from Microsoft indicate that the
IMDB will not ship in Windows 2000
because it does not fully address

users’ needs (notably query pro-
cessing and stored procedures).

Transactional Shared
Property Manager (TSPM)
The TSPM was based on IMDB, and
therefore will also not be found in
Windows 2000. COM+ will instead
incorporate the shared property
manager technology that is
currently found in MTS.

Runtime
You can think of the COM+ runtime
as essentially the COM you already
know and love. The COM+ runtime
is comprised of all the various
COM API functions (all those func-
tions starting with Co...) and the
underlying code that makes those
functions go. The runtime handles
things like object creation and
lifetime, marshalling, proxies,
memory management, and all the
other low-level things that make up
the foundation of COM+. In order to
support many of the nifty services
you just learned about, Microsoft
has added a number of new fea-
tures to the COM+ runtime, includ-
ing configured components, a
registration database, the promo-
tion of the contexts concept, and a
new ‘neutral’ threading model.

Registration
Database (RegDB)
In COM, the attributes of a particu-
lar COM object are generally kept
in two places: the system registry
and a type library. COM+ now
introduces the concept of a regis-
tration database that will be used
to hold attribute information for
COM+ object. Type libraries will
continue to be used, but the
system registry has distinctly
fallen out of favour as the place to
store object attributes, and use of
the registry for this purpose is
supported only for the sake of
backward compatibility. Common
attributes stored in the RegDB
include the transaction level sup-
ported by an object and whether it
supports JIT activation.

Configured Components
Components that store attributes
in RegDB are referred to as
configured components, whereas

components that do not are called
non-configured. The best example
of a non-configured component is
a COM or MTS component that you
are using unchanged in the COM+
environment. To participate in
most of the services I mentioned
earlier, your components will need
to be configured.

Contexts
Contexts are a term originally
introduced in MTS that described
the state of the current execution
environment of a given compo-
nent. Not only has this term moved
forward in COM+, but it has been
promoted. In COM, an apartment is
the most granular description of
the runtime context of a given
object, referring to an execution
context bounded by a thread or
process. In COM+ that honour
goes to a context, which runs
within some particular apartment.
A context implies description on a
more granular level than an apart-
ment, such as transaction and
activation state.

Neutral Threading
COM+ introduces a new threading
model, known as Thread Neutral
Apartment (TNA). TNA is designed
to provide the performance and
scalability benefits of a free
threaded object without the pro-
gramming problems of dealing
with interlocking access to shared
data and resources within the
server. TNA is the preferred
threading model for COM+ compo-
nents that do not surface UI ele-
ments. Components containing UI
should continue to use apartment
threading, since window handles
are tied to a specific thread. There
is a limitation of one TNA per
process.

Administration
In order to help manage all of these
new runtime features and services,
Microsoft provides a couple of
different means for management
and administration of the COM+
environment. The first is a
Microsoft Management Console
(MMC) snap-in that enables you to
manipulate COM+ component
attributes in the RegDB. The

64 The Delphi Magazine Issue 52

second is a set of APIs collectively known as the
Component Services Administration (COMAdmin)
Library that enable you to write code to perform such
as tasks as: Creation, installation, and configuration of
COM+ applications; management of installed COM+
applications; management and configuration of COM+
services; remote administration Component Services
on a different machine.

Summary
That sums up this introduction to COM+, the next ver-
sion of COM that will ship with Windows 2000. It’s a
very exciting time to be a COM developer, with all this
great new technology coming just down the road.
Remember, the motivation behind all of this is to pro-
vide COM developers the ability to build truly scalable
applications. As you design that next web-based or
multi-tier system, remember to keep COM+ features
things in mind. As the months progress, this column
will drill down into implementations of many of the
technologies you see here today.

Steve Teixeira is the VP of software development at
DeVries Data Systems and co-author of the upcoming
Delphi 5 Developer’s Guide. You can reach Steve at
steve@dvdata.com

	COM Who?
	Why COM?
	Services
	Transactions
	Security
	Just-In-Time Activation
	Queued Components
	Object Pooling
	Events
	Services Not In COM+
	Load Balancing
	In-Memory Database (IMDB)
	Transactional Shared Property Manager (TSPM)
	Runtime
	Registration Database (RegDB)
	Configured Components
	Contexts
	Neutral Threading
	Administration
	Summary

